为了使腿部机器人与人类和动物的运动能力相匹配,它们不仅必须产生强大的周期性步行和跑步,而且还必须在名义运动步态和更专业的瞬态操纵之间无缝切换。尽管最近在两足机器人的控制方面取得了进步,但几乎没有集中精力产生高度动态的行为。利用强化学习制定控制腿机器人的政策的最新工作表明,在产生强大的步行行为方面取得了成功。但是,这些学识渊博的政策难以在单个网络上表达多种不同行为。受腿部机器人的常规优化控制技术的启发,这项工作应用了一个经常性的策略来执行四步,90度转弯,使用从优化的单个刚体模型轨迹生成的参考数据进行了训练。我们提出了一个新型的培训框架,该培训框架使用结尾终端奖励从预先计算的轨迹数据中学习特定行为,并证明了双皮亚机器人Cassie上的硬件成功转移。
translated by 谷歌翻译
在这项工作中,我们提出了一种方法,用于生成降低的模型参考轨迹,用于用于双皮亚机器人的高度动态操作的一般类别,用于SIM卡之间,用于SIM卡至现实的增强学习。我们的方法是利用单个刚体模型(SRBM)来优化轨迹的库库,以用作学习政策的奖励函数中的专家参考。该方法将模型的动态旋转和翻译行为转化为全阶机器人模型,并成功将其传输到真实硬件。 SRBM的简单性允许快速迭代和行为改进,而基于学习的控制器的鲁棒性则可以将高度动态的动作传输到硬件。 %在这项工作中,我们介绍了一套可转移性约束,将SRBM动态修改为实际的两足机器人硬件,这是我们为动态步进,转动操作和跳跃创建最佳轨迹的框架。在这项工作中,我们介绍了一套可转移性约束,将SRBM动力学修改为实际的双皮亚机器人硬件,我们为各种高度动态的操作创建最佳轨迹的框架,以及我们整合参考轨迹的高速强化跑步轨迹的方法学习政策。我们验证了在两足机器人Cassie上的方法,我们成功地展示了高达3.0 m/s的高度动态接地步态。
translated by 谷歌翻译
在本文中,我们研究了在中间姿势期间应用踝扭矩是否可以是降低运动量的更有效的方法,而不是单独执行腿部长度。脚踝在人类Gaits中有用,因为许多原因包括静态平衡。在这项工作中,我们专门避免了脚后跟和托对福利,以研究中姿势期间的脚跟到脚趾的压力中心的进展是有益的。我们使用“踝关节驱动弹簧加载的倒立摆”模型来模拟压力动力学的变速中心,并且应用轨迹优化来查找最小化运输成本的极限循环。结果表明,对于绝大多数Gaits,脚踝扭矩不会影响运输成本。脚踝在从接地跑到空中跑步的过渡期间减少了在狭窄的Gaits窄带期间的运输成本。这表明在稳定步态的中间姿势期间施加脚踝扭矩不是直接有益的策略,但最有可能是有益的脚跟和脚趾之间的道路。
translated by 谷歌翻译
Accurate determination of a small molecule candidate (ligand) binding pose in its target protein pocket is important for computer-aided drug discovery. Typical rigid-body docking methods ignore the pocket flexibility of protein, while the more accurate pose generation using molecular dynamics is hindered by slow protein dynamics. We develop a tiered tensor transform (3T) algorithm to rapidly generate diverse protein-ligand complex conformations for both pose and affinity estimation in drug screening, requiring neither machine learning training nor lengthy dynamics computation, while maintaining both coarse-grain-like coordinated protein dynamics and atomistic-level details of the complex pocket. The 3T conformation structures we generate are closer to experimental co-crystal structures than those generated by docking software, and more importantly achieve significantly higher accuracy in active ligand classification than traditional ensemble docking using hundreds of experimental protein conformations. 3T structure transformation is decoupled from the system physics, making future usage in other computational scientific domains possible.
translated by 谷歌翻译
Adversarial imitation learning (AIL) has become a popular alternative to supervised imitation learning that reduces the distribution shift suffered by the latter. However, AIL requires effective exploration during an online reinforcement learning phase. In this work, we show that the standard, naive approach to exploration can manifest as a suboptimal local maximum if a policy learned with AIL sufficiently matches the expert distribution without fully learning the desired task. This can be particularly catastrophic for manipulation tasks, where the difference between an expert and a non-expert state-action pair is often subtle. We present Learning from Guided Play (LfGP), a framework in which we leverage expert demonstrations of multiple exploratory, auxiliary tasks in addition to a main task. The addition of these auxiliary tasks forces the agent to explore states and actions that standard AIL may learn to ignore. Additionally, this particular formulation allows for the reusability of expert data between main tasks. Our experimental results in a challenging multitask robotic manipulation domain indicate that LfGP significantly outperforms both AIL and behaviour cloning, while also being more expert sample efficient than these baselines. To explain this performance gap, we provide further analysis of a toy problem that highlights the coupling between a local maximum and poor exploration, and also visualize the differences between the learned models from AIL and LfGP.
translated by 谷歌翻译
Many problems in machine learning involve bilevel optimization (BLO), including hyperparameter optimization, meta-learning, and dataset distillation. Bilevel problems consist of two nested sub-problems, called the outer and inner problems, respectively. In practice, often at least one of these sub-problems is overparameterized. In this case, there are many ways to choose among optima that achieve equivalent objective values. Inspired by recent studies of the implicit bias induced by optimization algorithms in single-level optimization, we investigate the implicit bias of gradient-based algorithms for bilevel optimization. We delineate two standard BLO methods -- cold-start and warm-start -- and show that the converged solution or long-run behavior depends to a large degree on these and other algorithmic choices, such as the hypergradient approximation. We also show that the inner solutions obtained by warm-start BLO can encode a surprising amount of information about the outer objective, even when the outer parameters are low-dimensional. We believe that implicit bias deserves as central a role in the study of bilevel optimization as it has attained in the study of single-level neural net optimization.
translated by 谷歌翻译
The Covid-19 pandemic induced a vast increase in adolescents diagnosed with eating disorders and hospitalized due to eating disorders. This immense growth stemmed partially from the stress of the pandemic but also from increased exposure to content that promotes eating disorders via social media, which, within the last decade, has become plagued by pro-eating disorder content. This study aimed to create a deep learning model capable of determining whether a given social media post promotes eating disorders based solely on image data. Tweets from hashtags that have been documented to promote eating disorders along with tweets from unrelated hashtags were collected. After prepossessing, these images were labeled as either pro-eating disorder or not based on which Twitter hashtag they were scraped from. Several deep-learning models were trained on the scraped dataset and were evaluated based on their accuracy, F1 score, precision, and recall. Ultimately, the vision transformer model was determined to be the most accurate, attaining an F1 score of 0.877 and an accuracy of 86.7% on the test set. The model, which was applied to unlabeled Twitter image data scraped from "#selfie", uncovered seasonal fluctuations in the relative abundance of pro-eating disorder content, which reached its peak in the summertime. These fluctuations correspond not only to the seasons, but also to stressors, such as the Covid-19 pandemic. Moreover, the Twitter image data indicated that the relative amount of pro-eating disorder content has been steadily rising over the last five years and is likely to continue increasing in the future.
translated by 谷歌翻译
We introduce a pivot for exact selective inference with randomization. Not only does our pivot lead to exact inference in Gaussian regression models, but it is also available in closed form. We reduce the problem of exact selective inference to a bivariate truncated Gaussian distribution. By doing so, we give up some power that is achieved with approximate inference in Panigrahi and Taylor (2022). Yet we always produce narrower confidence intervals than a closely related data-splitting procedure. For popular instances of Gaussian regression, this price -- in terms of power -- in exchange for exact selective inference is demonstrated in simulated experiments and in an HIV drug resistance analysis.
translated by 谷歌翻译
Using geometric landmarks like lines and planes can increase navigation accuracy and decrease map storage requirements compared to commonly-used LiDAR point cloud maps. However, landmark-based registration for applications like loop closure detection is challenging because a reliable initial guess is not available. Global landmark matching has been investigated in the literature, but these methods typically use ad hoc representations of 3D line and plane landmarks that are not invariant to large viewpoint changes, resulting in incorrect matches and high registration error. To address this issue, we adopt the affine Grassmannian manifold to represent 3D lines and planes and prove that the distance between two landmarks is invariant to rotation and translation if a shift operation is performed before applying the Grassmannian metric. This invariance property enables the use of our graph-based data association framework for identifying landmark matches that can subsequently be used for registration in the least-squares sense. Evaluated on a challenging landmark matching and registration task using publicly-available LiDAR datasets, our approach yields a 1.7x and 3.5x improvement in successful registrations compared to methods that use viewpoint-dependent centroid and "closest point" representations, respectively.
translated by 谷歌翻译
Linear partial differential equations (PDEs) are an important, widely applied class of mechanistic models, describing physical processes such as heat transfer, electromagnetism, and wave propagation. In practice, specialized numerical methods based on discretization are used to solve PDEs. They generally use an estimate of the unknown model parameters and, if available, physical measurements for initialization. Such solvers are often embedded into larger scientific models or analyses with a downstream application such that error quantification plays a key role. However, by entirely ignoring parameter and measurement uncertainty, classical PDE solvers may fail to produce consistent estimates of their inherent approximation error. In this work, we approach this problem in a principled fashion by interpreting solving linear PDEs as physics-informed Gaussian process (GP) regression. Our framework is based on a key generalization of a widely-applied theorem for conditioning GPs on a finite number of direct observations to observations made via an arbitrary bounded linear operator. Crucially, this probabilistic viewpoint allows to (1) quantify the inherent discretization error; (2) propagate uncertainty about the model parameters to the solution; and (3) condition on noisy measurements. Demonstrating the strength of this formulation, we prove that it strictly generalizes methods of weighted residuals, a central class of PDE solvers including collocation, finite volume, pseudospectral, and (generalized) Galerkin methods such as finite element and spectral methods. This class can thus be directly equipped with a structured error estimate and the capability to incorporate uncertain model parameters and observations. In summary, our results enable the seamless integration of mechanistic models as modular building blocks into probabilistic models.
translated by 谷歌翻译